• Login
    View Item 
    •   DSpace Home
    • Journal Articles
    • International Journal of Nanoelectronics and Materials (IJNeaM)
    • View Item
    •   DSpace Home
    • Journal Articles
    • International Journal of Nanoelectronics and Materials (IJNeaM)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterisation of mechanical-electrical properties of graphene nanoplatelets filled epoxy as conductive ink in various patterns

    No Thumbnail [100%x80]
    View/Open
    Main article (1.312Mb)
    Date
    2021-08
    Author
    Aina Natasha, Hosnie
    Mohd Azli, Salim
    Nor Azmmi, Masripan
    Adzni, Md. Saad
    Feng, Dai
    Azmi, Naroh
    Mohd Nizam, Sudin
    Metadata
    Show full item record
    Abstract
    Graphene is one of conductive material that has been studied widely other than silver in the printed electronics industry. This material is considered as “wonder material” which has excellent properties in conducting electricity. Due to these properties advantageous of graphene, a new research study had been conducted regarding the electrical and mechanical properties of Graphene Nanoplatelets (GNPs) conductive ink in various print patterns. The way properties of graphene affecting the current flow of ink had become one of the objectives of this study with respect to hardness and sheet resistivity ink. On the other hand, this study aimed to determine the most excellent pattern and width that good in conducting electicity. Based on the existing formulation of graphene-based conductive ink, this study combined three different materials which are Graphene Nanoplatelets as a filler, epoxy resin as a binder, and polytheramine as a hardener. Samples of the ink were patterned into four (4) different types, which are a straight-line, zigzag, sinusoidal, and square pattern, and three (3) different widths, which are 1 mm, 2 mm, and 3 mm. In this study, to achieve the objectives, two tests were conducted, which are the sheet resistivity test by using a four-point probe and hardness test by using a nanoindenter. At the end of this study, sample of ink that have low sheet resistivity and high hardness has good properties among others samples and vice versa. Besides that, the best pattern that had the high performance of graphene was determined and discussed. The findings of this study will be used in the future and be very helpful in improving the performance of the existing conductive ink, which can efficiently conduct electricity at a low cost of production.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/73373
    Collections
    • International Journal of Nanoelectronics and Materials (IJNeaM) [336]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    NoThumbnail