• Login
    View Item 
    •   DSpace Home
    • Journal Articles
    • International Journal of Nanoelectronics and Materials (IJNeaM)
    • View Item
    •   DSpace Home
    • Journal Articles
    • International Journal of Nanoelectronics and Materials (IJNeaM)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The effect of graphene nanoplatelets filler size on the electrical and mechanical fatigue properties of conductive epoxy composites

    No Thumbnail [100%x80]
    View/Open
    Main article (1.033Mb)
    Date
    2021-10
    Author
    Andee Faeldza, Dziaudin
    Anita Akmar, Kamarolzaman
    Ghazali, Omar
    Nadlene, Razali
    Siti Hajar, Sheikh Md Fadzullah
    Metadata
    Show full item record
    Abstract
    Graphene nanoplatelets (GNPs) have exceptional electrical and mechanical properties that can be used as a filler for conductive polymer. However, the size of the GNP can affect the conductivity of the conductive polymer as well as its reliability, especially when it is subjected to a different type of loading during its applications. This study is conducted to showcase the effect of particle sizes of GNP as a filler on its conductivity and the reliability of the conductive polymer composites when subjected to mechanical fatigue stress through the bending test. In this work, two types of GNP filler sizes are considered, these being the 5μm (5M) and 15μm (15M) with an epoxy binder. The initial results show that 5M GNP-filled conductive polymer composites has 92.54% and 96.28% higher in bulk and sheet resistivity than 15M GNP conductive polymer. Following the cyclic bending test, the results show that the resistivity increases as the number of cycles increases due to cracks' formation. Other than that, it was found that the rate at which the resistivity increases within the 5000 cycles of bending for 5M conductive polymer is much lesser compared to that of 15M conductive polymer. The increment in bulk and sheet resistivity is 22.70% and 17.68%, respectively, for 5M, while 15M was found to be as much as 55.90% and 36.33%. The stability on the conductivity of the smaller size particle was discussed to be due to its area of surface contact after being bent through the cycles.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/74854
    Collections
    • International Journal of Nanoelectronics and Materials (IJNeaM) [336]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    NoThumbnail