Show simple item record

dc.contributor.authorM., Akmal
dc.contributor.authorR., Izamshah
dc.contributor.authorM., Halim
dc.contributor.authorM. S., Kasim
dc.contributor.authorR., Zamri
dc.contributor.authorM. S., Yob
dc.contributor.authorM. S., A. Aziz
dc.contributor.authorR. S. A., Abdullah
dc.contributorAdvanced Manufacturing Centre (AMC), Universiti Teknikal Malaysia Melaka (UTeM)en_US
dc.contributorFakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka (UTeM)en_US
dc.contributorSchool of Information Technology and Electrical Engineering, The University of Queenslanden_US
dc.creatorR., Izamshah
dc.date2022
dc.date.accessioned2022-08-02T08:44:35Z
dc.date.available2022-08-02T08:44:35Z
dc.date.issued2022-03
dc.identifier.citationInternational Journal of Nanoelectronics and Materials, vol.15 (Special Issue), 2022, pages 101-112en_US
dc.identifier.issn1997-4434 (Online)
dc.identifier.issn1985-5761 (Printed)
dc.identifier.urihttp://dspace.unimap.edu.my:80/xmlui/handle/123456789/75795
dc.descriptionLink to publisher's homepage at http://ijneam.unimap.edu.myen_US
dc.description.abstractThis work intended to assess the prediction and simulation effectiveness of the artificial neural network (ANN) with adaptive neuro-fuzzy inference system (ANFIS) approaches for modeling the material removal rate (MRR) in wire electrical discharge turning for fabrication of micro-pin made by Ti6Al4V. 16 experiments have been conducted according to full factorial design by varying four different WEDT input attributes namely pulse intensity, voltage open, wire tension and spindle speed. This dataset is aimed to be used for training and then, five more trials with random selection of input attributes is conducted to be established as the validation data. In developing the ANN model, Levenberg–Marquardt backpropagation training algorithm with ten neurons of hidden layer is employed and the Gaussian curve built-in membership function is used for developing the ANFIS model. The ANN and ANFIS model have been compared with experimental results. Both models indicated good predictions, however, the comparison revealed that the ANFIS model produced the closest result with the experiment compare than ANN.en_US
dc.language.isoenen_US
dc.publisherUniversiti Malaysia Perlis (UniMAP)en_US
dc.relation.ispartofseriesSpecial Issue ISSTE 2022;
dc.subject.otherArtificial neural networksen_US
dc.subject.otherFull-factorial designen_US
dc.subject.otherNeuro-fuzzy inference systemen_US
dc.subject.otherWEDTen_US
dc.titlePrediction of material removal rate in wire electrical discharge turning using artificial neural networks and adaptive neuro-fuzzy modelsen_US
dc.typeArticleen_US
dc.identifier.urlhttp://ijneam.unimap.edu.my
dc.contributor.urlizamshah@utem.edu.myen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record