Browsing Paulraj Murugesa Pandiyan, Assoc. Prof. Dr. by Subject "Acoustic analysis"
Now showing items 1-8 of 8
-
Detection of vocal fold paralysis and edema using time-domain features and probabilistic neural network
(Inderscience Publisher, 2011)This paper proposes a feature extraction method based on time-domain energy variation for the detection of vocal fold pathology. In this work, two different vocal fold problems (vocal fold paralysis and edema) are taken ... -
Diagnosis of voice disorders using band energy spectrum in wavelet domain
(Universiti Malaysia Perlis (UniMAP), 2008-03-08)In the evolution of quality of speech, acoustic analyses of normal and pathological voices have become increasingly interesting to researchers in laryngology and speech pathologies. Vocal signal information plays an important ... -
Diagnosis of voices disorders using MEL scaled WPT and functional link neural network
(Biomedical Fuzzy Systems Association (BMFSA), 2008-03-31)Nowadays voice disorders are increasing dramatically due to the modern way of life. Most of the voice disorders cause changes in the voice signal. Acoustic analysis on the speech signal could be a useful tool for ... -
Feature extraction based on mel-scaled wavelet packet transform for the diagnosis of voice disorders
(SpringerLink, 2008-06-25)Feature extraction from the vocal signal plays very important role in the area of automatic detection of voice disorders. Many feature extraction algorithms have been developed in the last three decades based on acoustic ... -
Identification of vocal and voice disorders
(Universiti Malaysia Perlis (UniMAP), 2007-10-25)The discrimination of normal and pathological voices using noninvasive acoustic analysis helps to perform accurate identification of voice disorders and diagnoses of vocal and voice disease. Acoustic analysis is a non- ... -
Improved back propagation neural network for the diagnosis of pathological voices
(Association for Advancedment of Modelling and Simulation Techniques in Entreprises (A.M.S.E), 2008)Most of vocal and voice diseases cause changes in the voice. ENT clinicians use acoustic voice analysis to characterize the pathological voices. Nowadays, voice diseases are increasing dramatically due to unhealthy social ... -
Supervised neural network classifier for voice pathology
(Kongu Engineering College, 2008-01-03)The classification of normal and pathological voices using noninvasive acoustical analysis features helps speech specialist to perform accurate diagnoses of vocal and voice disease. Acoustic analysis is a non-invasive ... -
Time-domain features and probabilistic neural network for the detection of vocal fold pathology
(Universiti Malaya, 2010)Due to the nature of job, unhealthy social habits and voice abuse, people are subjected to the risk of voice problems. It is well known that most of vocal fold pathologies cause changes in the acoustic voice signal. ...