dc.contributor.author | Paulraj, Murugesa Pandiyan, Prof. Dr. | |
dc.contributor.author | Mohd Shukry, Abdul Majid, Dr. | |
dc.contributor.author | Sazali, Yaacob, Prof. Dr. | |
dc.contributor.author | Zin, M.Z.M. | |
dc.date.accessioned | 2014-06-06T08:36:57Z | |
dc.date.available | 2014-06-06T08:36:57Z | |
dc.date.issued | 2008-12 | |
dc.identifier.citation | p. 1-6 | en_US |
dc.identifier.isbn | 978-1-4244-2315-6 | |
dc.identifier.uri | http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4786641 | |
dc.identifier.uri | http://dspace.unimap.edu.my:80/dspace/handle/123456789/35155 | |
dc.description | Proceeding of the International Conference on Electronic Design (ICED 2008) at Penang, Malaysia on 1 December 2008 through 3 December 2008. Link to publisher's homepage at http://ezproxy.unimap.edu.my:2080/Xplore/dynhome.jsp?tag=1 | en_US |
dc.description.abstract | Monitoring systems for motorbike industry requires high and efficient degree of performance. In recent years, automatic identification and diagnosis of motorbike engine faults has become a very complex and critical task. The noise produced by a motorbike engine is an important information source of fault diagnosis. Artificial Neural Network finds applications in many industries including condition monitoring and fault diagnosis. In this paper a simple feature extraction algorithm that extracts the features from the engine noise signal using discrete wavelet transform is presented. The engine noise signals are decomposed into 8 levels using Daubechies ldquodb4rdquo wavelet family. The eight level coefficients energy of approximated version and detailed version are computed and used as features. Three simple neural network models are developed and trained by conventional backpropagation algorithm for identifying the motorbike engine faults and the average classification rates are around 85%. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE Conference Publications | en_US |
dc.relation.ispartofseries | Proceeding of the International Conference on Electronic Design (ICED 2008); | |
dc.subject | Backpropagation neural network | en_US |
dc.subject | Energy coefficients | en_US |
dc.subject | Wavelet transform | en_US |
dc.title | Motorbike engine faults diagnosing system using neural network | en_US |
dc.type | Working Paper | en_US |
dc.identifier.url | http://dx.doi.org/10.1109/ICED.2008.4786641 | |
dc.contributor.url | paul@unimap.edu.my | en_US |
dc.contributor.url | shukry@unimap.edu.my | en_US |
dc.contributor.url | s.yaacob@unimap.edu.my | en_US |